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Abstract. Mathematical model of direct and inverse problems is 

developed for the flat plate probe which is subjected to time-

dependent heat flux at one end, while the other end is kept insulated. 

The direct solution, which is concerned with determination of the 

temperature distribution in the probe, is developed using an approach 

based on the method of variation of parameters. The direct solution is 

used to solve the inverse heat conduction problem (IHCP) for any 

assumed heat flux. In this paper, the piecewise linear interpolation 

model for heat flux is used. The inverse algorithm is developed using 

the Levenberg-Marquardt method. Different test cases for known heat 

flux profile are used to validate the inverse algorithm. A satisfactory 

agreement between exact and estimated heat flux profiles is achieved. 

The algorithm is used to estimate the heat flux for a flat plate probe 

developed at Ohio University. 

Keywords: Direct problem, Inverse problem, Variation of parameters, 

IHCP 

1. Introduction 

An inverse problem in heat conduction consists of solving a direct 

problem and then finding some way to determine the inverse solution 
[1]

. 

In inverse heat conduction problem 
[1]

, the direct problem is used to 

determine the temperature distribution inside the solid body when certain 

initial and boundary conditions are given, such as temperature or heat 

flux, which are known as a function of time. In practice, the temperature 

in the solid can be monitored by sensors; however the surface heat flux 

cannot be determined experimentally. Theoretically, the surface heat flux 
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history can be calculated from a set of temperature values. This type of 

problem is called “inverse heat conduction problem (IHCP)”. The 

solution of the inverse heat conduction problem is difficult due to its 

sensitivity to measurements 
[2,3]

. 

Several numerical methods have been developed to solve the 

inverse problem due to its sensitivity to measurements. These methods 

are discussed in detail by M N Ozisiks et al. 
[1]

 and J. Taler et al. 
[4]

. 

Tervola 
[5]

 developed a numerical method to determine thermal 

conductivity from measured temperature profiles. The boundary element 

method (BEM) was used by Lesnic et al. 
[6]

 to determine the boundary 

conditions in a transient conduction problem where energies are specified 

in two areas of a one-dimensional slab. Tseng et al. 
[7]

, Hunag et al. 
[8]

, 

and Keanini 
[9]

 described applications of IHCP to the manufacturing 

processes.  

Estimation of heat flux from measured transient temperature 

history has received great interest during last three decades 
[1,4]

. S. 

Abboudi et al. 
[10]

 developed one dimensional heat conduction model to 

analyze numerically and experimentally transient heating of a flat 

specimen. The heat flux absorbed by the specimen was estimated using 

inverse analysis. Stolz 
[11]

 developed a numerical solution for the inverse 

problem of heat conduction for some simple shapes. Alam et al. 
[12]

, 

Kumar 
[13] 

, and Zhong 
[14]

 developed an inverse solution to determine the 

surface heat flux for quench probes in quenching experiment. These 

authors used a the polynomial model (representing heat flux with sixth 

degree polynomial) to solve the inverse problem for the probe 
[12,13]

. 

They suggested that the results can be improved by representing the heat 

flux )(tq  by piecewise continuous polynomial of different degrees. The 

next step is to replace the polynomial model by cubic spline model 
[14]

. 

The solution obtained by the procedure described is complicated and 

posed difficulties in the representation of heat flux in cubic spline. Also, 

the cubic spline exhibited sensitivity and stability problems. Therefore, a 

piecewise continuous straight line representation of )(tq  was suggested 

in order to improve the stability of the solution. 

A classic problem in IHCP is the determination of surface heat flux 

in a one-dimensional slab. Quenching experiments are often carried out 

to determine the surface heat fluxes from experimental measurements of 

the temperature history. This is a typical inverse problem and therefore it 
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is required to develop an algorithm with special considerations. This 

paper is concerned with several objectives. Firstly, inverse heat 

conduction model is developed based on the formulation of direct and 

inverse problem. Secondly the inverse algorithm is constructed and 

tested. Finally, numerical estimation of boundary heat flux for the flat 

plate probe is investigated based on experimental measurements of the 

temperature history obtained from Quenching experiment 
[15]

.  

2. Mathematical Model 

2.1 Direct Problem 

Consider a one-dimensional heat conduction problem through a 

uniform plate, as shown in Fig. 1. At one end, 0=x , the surface is 

insulated, and the second end, Lx =  , is subjected to heat flux ),( tLq . 

This problem is described by the following set of equations: 

2

2 ),(),(

x

txT

t

txT

∂

∂
=

∂

∂
α ,         in Lx <<0 , for 0>t    (1a) 
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x
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)(
),(

tq
x

tLT
k =
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0
xTxT = ,                      for 0=t , Lx <<0    (1d) 

where 

=α thermal diffusivity            =T temperature 

  x = space coordinate               k = thermal conductivity 

= L thickness of plate             =q heat flux 
 

 

 

 

 

 

 

 

 

 

Fig. 1. One-dimensional flat plate probe with boundary conditions. 
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For the case where the boundary condition at Lx = , i.e., )(tq , the 

initial condition )(
0
xT , and the thermo-physical properties α , and k  are 

all specified, the problem given by Equation (1) is concerned with the 

determination of the temperature distribution ),( txT  in the interior 

region of the solid as a function of time and position. 

2.2 Inverse Problem 

The inverse problem is concerned with the determination of the 

unknown function )(tq  at the surface Lx = . To determine the heat flux 

)(tq , measured temperatures i
imeas

TtxT

∗

≡),(  are given at an interior 

point 
meas
x  at different times ),,2,1(  Iit

i
…= , over a specified time 

interval 
ftt ≤<0 . The mathematical formulation of the inverse problem 

is given below: 

2

2 ),(),(
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t

txT

∂

∂
=

∂
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α ,               in Lx <<0 , for 

ftt ≤<0       (2a) 

                 0
),0(
=

∂
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x

tT
,                       at 0=x , for 

ftt ≤<0              (2b) 

     )()(
),(

unknowntq
x

tLT
k ==

∂

∂
,  at Lx =  , for 

ftt ≤<0          (2c) 

)()0,(
0
xTxT = ,                       for 0=t , Lx <<0    (2d) 

and temperature measurements at an interior location 
meas
x  at different 

times 
i
t  are given by 

    
∗

≡
iimeas

TtxT ),(  at 
meas
xx =  for ),,2,1(  Iitt

i
…==   (3) 

In our problem, the boundary surface function heat flux )(tq  is 

unknown. Therefore, this version of the problem is referred to as a 

boundary inverse heat conduction problem. The main objective of the 

direct problem is to construct the temperature field ( ),( txT , the effect) in 

the plate, when all parameters (causes) are specified (
0

,,, Tqkα ). On the 

other hand, the objective of the inverse problem is to estimate heat flux 

(the cause) from the knowledge of the measured temperature (the effect) 

at some specified section of the medium ( 0x
meas

= ).  

Alam et al. 
[12]

 and Kumar 
[13]

 developed an analytical solution, 

which consists of finding the temperature in a one-dimensional plate for a 



Inverse Estimation of Boundary Heat Flux for Heat Conduction Model 77 

given heat flux which is assumed to be a polynomial function of time. It 

was suggested that the results can be improved by representing the )(tq  

by piecewise continuous polynomial of different degrees. Zhong 
[14]

 

conducted the study with a cubic spline function assigned to represent the 

heat flux. However, the heat flux and the heat transfer coefficients 

obtained from these approaches were not satisfactory. 

3. Solution of the Direct problem 

The method of variation of parameters, which is suitable for both 

steady-state and non-steady-state problems, is used to solve the direct 

heat conduction problem 
[16]

. The problem will be decomposed to two 

parts: a problem formulation with prescribed initial condition and zero 

boundary conditions, and a second problem formulation with prescribed 

boundary conditions and zero initial condition. Since the problem is 

linear one can write: 
 

),(),(),( txvtxutxT +=       (4) 

where ),( txu  is the solution of  

2
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while ),( txv  is the solution of  
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The method of separation of variables can be used to find the solution of (5) 
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∑
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Making use of the solution of homogenous problem (5), we look for a 

solution in the form of a Fourier cosine series with time-dependent 

Fourier coefficients, that is 
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Using the orthogonality property of eigenfunction, differentiating with 

respect to time, integration along x-axis and applying the boundary 

conditions leads to  
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The solution of the above first order linear ordinary differential equation 
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By letting 0=n , the above expression reduce to  
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Using equations (11) and (12), the solution can be written as  
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where  

L

n

n

π
λ = ,   ,...3,2,1=n  

For a constant initial condition, i.e., 
0

)0,( TxT = , the solution becomes 
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The solution (14) for constanttq =)( agrees with solution presented by 

Beck et al. 
[2]

. 

4. Inverse Problem Solution 

4.1 Linear Spline Model 

In the previous approaches, the analytical solution was developed 

by representing the heat flux as a sixth-degree polynomial, Kumar 
[13]

, 

and as a cubic spline by Zhong 
[14]

. In this study, the heat flux )(tq  in the 

analytical solution is expressed as a linear spline function in t , i.e., as a 

piecewise straight line representation. Here the best fit straight line 

method is used to match the experimental data with such analytical data 

where the least square error between the linear spline and the 

experimental data is minimized. 

In this method, a polynomial of degree 1 is the simplest polynomial 

to use which produces a polygonal path that consists of line segments 

that pass through the points. A point-slope formula for a line segment to 

represent this piecewise linear curve is given by the following expression 
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The resulting curve looks like a broken line, as seen in Fig. 2. The 

resulting linear spline function can be written in the form 
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It is assumed that the abscissas are ordered 
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containing t  can be found by successively computing the difference 
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tttttt −−−

−
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… , such that 0<−
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tt  for smallest i . Hence, for the 

described interval 
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After determining the suitable interval for t  we can perform 

integration of )(tq  over the interval [ ]tt ,
0

 by dividing the interval into 

two subintervals [ ]
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,
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tt  and [ ]tt
i
,

1−
. The first part of integration is the 

summation of the area of trapezoidal over the 1−j  intervals. After the 

heat flux is calculated in the straight line form, the analytical temperature 

can be compared with the simulated data. 

Substituting )(tq  in Equation (14), one can get 
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Performing the integrations, the solution in terms of the piecewise 

straight lines heat flux becomes 
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4.2 Finite Difference Solution 

To check validation of the above solution (18), the direct problem 

(1) can be solved using a finite difference method. The method will start 

as follows: 

Rewriting the partial differential equation in terms of finite 

difference approximations to the derivatives 
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where  

Equation for the left boundary condition 0
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Rearranging the above equation, we get 

⎥
⎦

⎤
⎢
⎣

⎡ Δ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= +

−

+ )(2
1

2 1

0

10

1 nn

j

n

j

n

j
tq

k

x
T

F
TFT                                             (26) 

                           where         
c

k

ρ
α =   ,             

20

x

t
F

Δ

Δ
=
α

 

For stability purposes, we must have the following condition in the 
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A finite difference program was written to compare numerical and 

analytical solutions for )()( tftq = . The temperature profile for both 

analytical and finite difference solutions was compared in Fig. 3. From 

analysis of Fig. 3 it follows that both solutions yield the same results.  
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4.3 MATLAB Code 

The Levenberg-Marquardt method is used to solve the inverse 

problem. It is an efficient method for solving linear problems that are ill-

conditioned 
[17,18]

. For the solution of the present inverse problem, we 

consider the unknown heat flux )(tq  to be expressed as linear spline 

function in t , i.e., as a piecewise straight line representation, with 

unknown parameters 
i

q .  

The solution of the heat conduction problem (2) with )(tq  

unknown parameterized as piecewise straight line function is an inverse 

heat conduction problem in which the parameters 
i

q  are to be estimated 

in equation (18). The solution of this inverse heat conduction problem for 

the estimation of the N  unknown parameters 
i

q , for ,,...,2,1 Ni =  is 

based on the minimization of the ordinary least squares norm: 

2

1

)()( ∑ ⎥⎦

⎤
⎢⎣

⎡
−=

=

∗I

i

i
i qTTqS        (28) 

Fig. 3. Comparison between the analytical and the finite difference solutions for heat flux 
2

0
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where  

S = sum of squares error or objective function 

[ ]
N

T
qqqq ,...,,

21
≡ = vector of unknown parameters 

( ) ( )
ii
tqTqT ,≡ = estimated temperature at time 

i
t  

( )
i

i tTT

∗∗

≡ = measured temperature at 
i
t                     

N = total number of the unknown parameters 

I =total number of measurements, where NI ≥  

The estimated temperatures ( )qT
i

 are obtained from the solution of 

the direct problem at the measurement location, 
meas
x , by using the 

estimated unknown parameters 
i

q , Ni ,...,2,1= . The unknown vector 

[ ]
N

T
qqqq ,...,,

21
≡  is determined by minimizing )(qS using the iterative 

procedure in the Levenberg-Marquardt method 
[17, 18]

. 

After defining the direct and inverse formulations, the Matlab code 

is written to solve the inverse problem with the help of optimization tool 

box 
[19]

 which impelements the criteria, and the Levenberg-Marquardt 

method. The iterative procedure, the stopping criteria, and the 

computational algorithm were chosen based on the Levenberg-Marquardt 

Matlab function capability.  

5.  Test Cases: Inverse Solution for Known Heat Flux Profile 

In this section, two test cases are discussed. One test case is for a 

heat flux that increases in a linear fashion at time. Exact values of the 

simulated temperature history are used. The second case is for a heat flux 

which varies at time in a triangular fashion; for this case both exact 

temperatures and temperatures with random errors are used. 

For the time interval 1200 ≤< t , we consider 100 transient 

measurements of a single sensor located at 0=
meas
x  . 

5.1 Simulated Measurements 

Simulated measurements are obtained from the solution of the 

direct problem at sensor location by using prior prescribed values for the 

unknown parameters 
i

q  of heat flux )(tq . 
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For example, if we consider that we can represent the heat flux 

with 10 parameters, i.e., 

                                        ( )
1

1

1

1
)(

−

−

−

−

−

−

−

+=
i

ii

ii

i
tt

tt

qq
qtq ,  

with ],,,[
1021
qqqq …=  at 

1021
,...,, tttt

i
= , for 10=N . 

By using the known heat flux described above, the solution (18) of the 

direct problem at the measurement location 0=
meas
x provides the exact 

(errorless) measurements )(
*

i
ex tT , for Ii ,,1…= . Measurements 

containing random errors are simulated by adding an error term to 

)(
*

i
ex tT  in the form 

[1]
 

ϖσ+= )()(
**

iexi tTtT                                                                             (29) 

where   

             )(
*

itT = simulated measurements containing random errors 

             )(
*

iex tT = exact (errorless) simulated measurements 

             σ  = standard deviation of the measurements errors 

             ϖ = random variable with normal distribution, zero mean and 

unitary standard deviation, for the %99  confidence level we 

have 576.2576.2 <<− ϖ . 

With use of such simulated measurements as the input data for the 

inverse analysis, we expect the code to return the same values of 

parameters used to find the direct solution. 

5.2 Case One: Linear Increase in Heat Flux 

The surface heat flux )(tq  increases linearly in time in the form 

tqtq
0

)( =  over the interval 
ftt ≤<0 . The results of the inverse 

calculation for case 0=σ  are shown in Fig. 4. A comparison of the 

exact simulated and estimated values of the temperatures profile at 

insulated surface of probe shown in the figure reveals that they are in 

excellent agreement. Also, it is clear from the figure the recovered heat 

flux coincides with the exact heat flux. To test the code accuracy, a 

simulated measurement containing random errors was used. Figure 5 

compares the heat flux profiles for both cases to the exact profile, a 
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satisfactory result for the case of perturbed measurements is achieved. 

The results obtained in the figure show that increasing the measurement 

errors decrease the accuracy of the inverse algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Results from IHCP algorithm using time-varying heat flux in the form tqtq
0

)( =

.
 

5.3 Case Two: Triangular Heat Flux 

In this case the heat flux varies in time in a triangular fashion. To 

form the heat flux profile, we let the surface heat flux )(tq  increases 

linearly with time for t  between zero and 60, and for 60>t  the flux 

decreases linearly to zero at 120=t  and remains zero thereafter. 

Mathematically, it is in the form: 
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Fig. 5. The estimation of the time-varying boundary heat flux as straight line fashion. 

 

Using tqtq
0

)( =  and with help of superposition one can find the 

direct solution to this problem. Solving the inverse problem using the 

exact simulated result shows that the triangular heat flux profile matches 

the exact profile quite well, as well as the temperature profiles, as 

indicated in Fig. 6. For the case of simulated measurements containing 

random errors, Fig. 7 shows that the result is in a good agreement with 

the exact profile. As expected it is easier to recover a continuous function 

such as tqtq
0

)( = , than a discontinuous function like triangular heat flux 

given by Equation (30). To over this problem, smaller step size tΔ  and 

suitable measurements locations were used. Figure 7 shows that the sharp 

corner can be predicted very well by reduction of step size tΔ . 

6. Application 

An industrial problem such as thermal treatment of metal alloys can 

be modeled as an inverse problem. Quenching is a particular type of 



A. S. A. Alghamdi 88 

thermal treatment process that involves rapid cooling of metal alloys for 

the purpose of hardening. Experimental measurements of temperature 

history of quenching experiments can be used to determine the surface 

heat fluxes. The developed model was used to estimate the heat flux for 

the quenching experiment developed at Ohio University 
[20]

. The 

developed algorithm was used to solve this problem 
[15]

, but for the sake 

of completeness, the description of the experiments and the results will 

be presented. 

Fig. 6. Results from IHCP algorithm using time-varying heat flux in the form of triangular 

function. 
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Fig. 7. The estimation of the time-varying boundary heat flux as triangular function fashion. 

Experiments were conducted with a stainless steel probe in the 

shape of a rectangular box as shown in Fig. 8a. The sides of the box are 

approximated by, with each wall   thick 
[20]

. The experimental 

results of temperature data versus time is given in Fig. 8b for the 

thermocouple which is attached to the inside surface (at the center) of the  

wall of the probe. Since the wall thickness  is much smaller than 

the wall dimensions, the one-dimensional solution is valid for this wall of 

the probe. The temperature data collected from the quench probe is 

shown in Fig. 8b. The period corresponds to the air cooling of the probe 

during transport from oven to the quenching oven is removed.  

 Results from IHCP algorithm are presented in Fig. 9. In order to 

improve the accuracy of algorithm, the time step is significantly reduced. 

The experimental and analytical temperatures are compared in Fig. 9. It 

can be seen that the two temperature profiles match quite well. This 

indicates that the inverse solution is accurate, and it can be used to find 

the heat flux. Based on the analytical profile, the heat flux is then 

estimated based on Equations (18) and (28). The results are also shown in 
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Fig. 9. The heat flux values from the plate are very high initially, as 

expected and gradually decays to zero. The heat flux is seen to have a 

maximum value of  450 kw/m
2
. 

 

                                                                     

 

 

 

 

 

 

 

 

 

 

 

 
a) Picture of the quenching system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 
  b) Cooling curve for the probe. 

 
Fig. 8. Quenching experiment: a)- Picture of the quenching system , b)- Cooling curve for 

the probe (source: Ohio University 
[14,20]
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Fig. 9. Results from IHCP algorithm using experimental data from quench probe 

[15]
. 

 

Previous studies of this inverse heat conduction problem, which 

included the 6
th

 degree polynomial and cubic spline, have some 

limitations 
[12,14]

. The cubic spline exhibits sensitivity of heat flux to 

input data. When a cubic spline curve is used, the heat flux curve is 

assumed to be smooth so that the first derivative is continuous at the 

interface between the intervals. Consequentially, this requirement 

produces variations in the heat flux curve similar to sinusoidal curves. 

Using a piecewise continuous straight line, on the other hand, does not 

require a heat flux curve to be smooth. Therefore, in order to improve the 
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stability of the solution, a piecewise continuous straight line 

representation of )(tq  has been used.  

7. Conclusions 

An analytical solution of the direct problem, which consists of 

determining the temperature distribution in a one-dimensional uniform 

plate for a given time-dependent heat flux boundary condition at one end 

and the other end kept insulated, was  developed for general form of heat 

flux. The direct solution is determined by an approach based on the 

method of variation of parameters. The solution is identical to the 

solution found by Beck et al. 
[2]

 for constant heat flux.  

The analytical solution is developed based on a piecewise linear 

representation of the heat flux and tested for different profiles. The 

solution shows an excellent agreement with finite difference solution. 

The piecewise linear interpolation model for heat flux is constructed to 

be used in the inverse solution. The heat flux profile or values were then 

found by employing the Levenberg-Marquardt method to fit the 

analytical solution based on simulated data. Then the analytical solution 

of the temperature profile over the plate is found based on this heat flux. 

Comparing temperatures history calculated by the inverse algorithm with 

that found by using known heat flux profile (simulated data) shows that 

the two solutions are in excellent agreement. 

As an industrial problem, the algorithm was applied to 

experimental data obtained from a quenching experiment developed at 

Ohio University. The heat flux history during the quenching process is 

found and the theoretical temperature curve obtained from the analytical 

solution is compared with experimental results. The two temperature 

solutions show very satisfactory agreement 
[15]

. 

 
Nomenclature 

Acronyms 

IHCP  Inverse heat conduction problem 

English Symbols 

 k   thermal conductivity   [ KmW .

] 

 L   thickness of plate    [m] 

 q   heat flux     [ 2
mW ] 
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S   sum of squares error or objective function [-] 

 T   temperature    [ C
0 ] 

t   time     [s] 

 x   space coordinate     [m] 

u   temperature    [ C
0

] 

N   total number of the unknown parameters [-] 

I   total number of measurements  [-] 

Greek Symbols 

α   thermal diffusivity    [ sm
2 ] 

v   temperature     [ C
0

] 

λ   eigenvalues     [-] 

τ   dummy variable     [-] 

ζ   dummy variable    [-] 

Subscripts 

i    integer (for temperatures measurements) 

n    integer ( for eigenvalues) 

0    initial temperature 

f    final reading of temperature ( final time) 

meas   measured temperature at interior point of the probe 

Superscripts 

∗   measured temperature at 
i
t  

n    integer ( for eigenvalues) 

T   transpose  
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